换元法
来源: 阅读:1887 次 日期:2017-05-02 14:32:54
温馨提示: 小编为您整理了“换元法”,方便广大网友查阅!

换元法

以新变量代替函数式中的某些量,使函数转化为以新变量为自变量的函数形式,进而求出值域。

例2求函数y=x-3+√2x+1的值域。

点拨:通过换元将原函数转化为某个变量的二次函数,利用二次函数的值,确定原函数的值域。

解:设t=√2x+1(t≥0),则

x=1/2(t2-1)。

于是y=1/2(t2-1)-3+t=1/2(t+1)2-4≥1/2-4=-7/2.

所以,原函数的值域为{y|y≥-7/2}。

点评:将无理函数或二次型的函数转化为二次函数,通过求出二次函数的值,从而确定出原函数的值域。这种解题的方法体现换元、化归的思想方法。它的应用十分广泛。

练习:求函数y=√x-1–x的值域。(答案:{y|y≤-3/4}

更多信息请查看高考
上一篇:构造法
下一篇:单调法
手机网站地址:换元法
由于各方面情况的不断调整与变化, 提供的所有考试信息和咨询回复仅供参考,敬请考生以权威部门公布的正式信息和咨询为准!
关于我们 | 联系我们 | 人才招聘 | 网站声明 | 网站帮助 | 非正式的简要咨询 | 简要咨询须知 | 新媒体/短视频平台 | 手机站点

版权所有:

Baidu
map